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ABSTRACT

Most cellular processes are carried out by protein complexes, but it is still largely unknown how the subunits of lowly ex-
pressed complexes find each other in the crowded cellular environment. Here, we will describe a working model where
RNA-binding proteins in cytoplasmic condensates act as matchmakers between their bound proteins (called protein tar-
gets) and newly translated proteins of their RNA targets to promote their assembly into complexes. Different RNA-binding
proteins act as scaffolds for various cytoplasmic condensates with several of them supporting translation. mRNAs and pro-
teins are recruited into the cytoplasmic condensates through binding to specific domains in the RNA-binding proteins.
Scaffold RNA-binding proteins have a high valency. In our model, they use homotypic interactions to assemble conden-
sates and they use heterotypic interactions to recruit protein targets into the condensates. We propose that unoccupied
binding sites in the scaffold RNA-binding proteins transiently retain recruited and newly translated proteins in the conden-
sates, thus promoting their assembly into complexes. Taken together, wepropose that lowly expressed subunits of protein
complexes combine information in their mRNAs and proteins to colocalize in the cytoplasm. The efficiency of protein com-
plex assembly is increased by transient entrapment accomplished by multivalent RNA-binding proteins within cytoplasmic
condensates.

Keywords: protein–protein interaction; function of biomolecular condensates; cooperativity between mRNA and protein
motifs; cytoplasmic compartmentalization: subcellular organization; localized processes

KNOWN MODES OF LOCALIZED PROTEIN
COMPLEX ASSEMBLY IN CELLS

Most cellular processes are carried out by protein
complexes (Alberts 1998). These complexes are often
composed of two or more distinct subunits. Although we
have a good understanding whether two protein surfaces
can interact with each other, it is still largely unknown
how the subunits find each other in living cells. An impor-
tant concept that reduces the number of possible interac-
tions is compartment-specific complex assembly. For
example, multicomponent channels and receptors that
contain transmembrane domains are synthesized and as-
sembled in the endoplasmic reticulum (ER) (Bonifacino
et al. 1990; Zerangue et al. 1999). Also a group of non-
membrane proteins is known to assemble locally. Among
the most highly abundant cellular protein complexes are
ribosomes which are partially assembled in the nucleolus
(Klinge and Woolford 2019; Lafontaine et al. 2021).
Moreover, synaptic proteins are often translated and as-

sembled locally at synapses (Biederer et al. 2002; Hafner
et al. 2019; Holt et al. 2019; Biever et al. 2020).
However, it is currently not known how the majority of
non-membrane protein complexes colocalize for efficient
and specific assembly in the cytoplasm.

HOWARE PROTEIN COMPLEXES FORMED IN
CELLS WHEN THEY ARE GENERATED FROM
LOWLY EXPRESSED SUBUNITS?

Protein complex assembly is often studied in vitro with pu-
rified subunits, assuming that individually translated sub-
units assemble through diffusion and random encounter
post-translationally in cells. This model may work for pro-
tein complexes that consist of highly expressed subunits.
However, among the millions of proteins in the crowded
cellular mileu, it is unclear how lowly expressed subunits
establish faithful and efficient protein complexes.
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The problem of finding a lowly expressed partner is best
illustrated by the following analogy: If one protein is the
size of a person, then the cellular space corresponds to
400 football fields that are packed with people. How do
you find your friend? If both of you start walking, it is unlike-
ly that you will meet in due time. One way to meet is to en-
ter the football fields together. For proteins in cells, this
means that twomRNAs that encode the subunits of a com-
plex would enter the cytoplasm together. This strategy is
widely used by operon-encoded proteins in prokaryotes
(Shieh et al. 2015). As eukaryotic cells do not have oper-
ons, this strategy would require that the mRNAs already
colocalize in the nucleus. Although there is some evidence
for this model (Morf et al. 2019; Nair et al. 2021), system-
atic studies that rigorously test this idea are still lacking.
Another way to increase the chance of interactor coloc-

alization is to restrict the search space (Klemm et al. 1998;
Kuriyan and Eisenberg 2007). Returning to our football
field analogy, you could tell your friend to meet you near
the south goal of football field 23 to restrict the search
space. Smaller volumes that promote subunit encounter
can be provided by membrane-enclosed organelles such
as the ER andmitochondria. In order for proteins to localize
to these specialized compartments, they need to bring the
information on a “meeting point” with them. The informa-
tion can be stored within the proteins in the form of signal
peptides or transmembrane domains that guide them to
their respective compartments. The meeting point infor-
mation can also be stored in the mRNAs that encode the
proteins through binding sites for RNA-binding proteins
that determine subcellular mRNA localization (Lawrence
and Singer 1986; Sylvestre et al. 2003; Saint-Georges
et al. 2008; Gadir et al. 2011; Buxbaum et al. 2015;
Glock et al. 2017). Alternatively, mRNA-bound RNA-bind-
ing proteins can recruit effector proteins such as the signal
recognition particle to the translating ribosomes to guide
them to their correct location for localized protein synthe-
sis on the ER (Chartron et al. 2016). After the proteins are
localized, the surrounding membrane prevents the imme-
diate escape of the subunits. This increases their local
dwell time, thus giving the subunits time to encounter their
respective partners.
In addition to membrane-enclosed organelles, we pro-

pose that membraneless organelles can provide compart-
ments for the assembly of protein complexes that lack
transmembrane domains. The initial localization of
mRNAs and proteins usingmRNA and protein motifs is sim-
ilar to the mechanism described for membrane-
enclosed organelles. However, it is currently largely unclear
how cytoplasmic condensates allow transient retention of
proteins to promote their assembly into protein complexes.
Here, we will describe a working model by which cyto-

plasmic condensates promote protein complex assembly.
We propose that RNA-binding proteins that are scaffolds
of cytoplasmic condensates act as matchmakers between

proteins to promote their assembly into complexes.
Whereas the term “RNA matchmaking” has been used
to describe RNA base-pairing that is promoted by RNA-
binding proteins (Portman and Dreyfuss 1994; Wu et al.
2020), here, we propose that RNA-binding proteins bring
together proteins for complex assembly.

WORKING MODEL FOR RNA-BINDING PROTEINS
THAT SERVE AS MATCHMAKERS BETWEEN
SUBUNITS OF PROTEIN COMPLEXES

RNA-binding proteins assemble into translation-compe-
tent cytoplasmic condensates that enrich functionally
related mRNAs and proteins. Therefore, cytoplasmic
condensates might serve as organizational hubs that facil-
itate protein complex assembly between the enriched pro-
teins and the proteins encoded by the enriched mRNAs
(Fig. 1). The model consists of the following steps: (i) mul-
tivalent interaction of specific RNA-binding proteins with
their bound mRNAs results in phase separation and the
generation of cytoplasmic condensates that allow transla-
tion; (ii) Condensate RNA-binding proteins bind to specific
mRNAs, thus recruiting and anchoring them to the con-
densates; (iii) RNA-binding proteins also bind specifically
to proteins, thus bringing them into the condensates; (iv)
Unoccupied binding sites within the RNA-binding proteins
are used to transiently retain proteins in the condensates;
(v) Colocalization of the recruited proteins with the newly
translated proteins encoded by condensate-enriched
mRNAs promotes protein–protein interactions of function-
ally related proteins. In this model, repeated motifs within
mRNAs and proteins are used to increase their local dwell
time to promote complex assembly.
It seems that protein complexes formed by lowly ex-

pressed subunits that lack membrane domains would ben-
efit the most from this assembly mode. Moreover, we
hypothesize that the protein- and RNA-interaction do-
mains of scaffold RNA-binding proteins each determine
a unique condensate assembly mode. These interaction
domains allow transient entrapment of proteins containing
said domains, thus providing specificity for condensate-
dependent protein complex assembly.

RNA-BINDING PROTEINS ASSEMBLE IN AN
mRNA-DEPENDENT MANNER TO GENERATE
CYTOPLASMIC CONDENSATES

Several cytoplasmic condensates have been found that are
generated by mRNA-dependent phase separation (Fig.
1A). They include TIS granules, FXR1 condensates, and
L-bodies, and they were detected in human cell lines,
mouse myotubes, and in frog oocyte stages II–III, respec-
tively (Ma and Mayr 2018; Smith et al. 2020; Neil et al.
2021). TIS granules are generated by assembly of the
RNA-binding protein TIS11B. They have an irregularly
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shaped morphology and localize to the surface of the
rough ER (Ma and Mayr 2018; Ma et al. 2021). FXR1 con-
densates are generated through RNA-dependent assem-
bly of the RNA-binding protein FXR1. They were initially
observed in muscle cells (Smith et al. 2020) but have also
been found in human cell lines where they generate a
large network in the cytoplasm, called FXR1 network
(Chen X and Mayr C, unpubl.). In frog oocytes, irregularly
shaped L-bodies are enriched for several RNA-binding
proteins together with their bound mRNAs (Cabral and
Mowry 2021; Neil et al. 2021).

RNA-BINDING PROTEINS BIND TO mRNAs WITH
SPECIFIC MOTIFS THUS LEADING TO THEIR
ENRICHMENT IN CYTOPLASMIC CONDENSATES

mRNAs often use specific sequence or structural motifs to
localize to different cytoplasmic condensates (Zhang et al.
2015; Boke et al. 2016; Langdon et al. 2018; Ma and Mayr
2018; Neil et al. 2021). For example, mRNAs with binding
sites for the RNA-binding protein Xvelo localize to the
Balbiani body in frog oocytes. Injection of mRNAs that
lacked these binding sites prevented their condensate

E

F
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FIGURE1. Model for condensate RNA-binding proteins to serve as proteinmatchmakers for complex assembly. (A) An RNA-binding protein (red)
assembles into a cytoplasmic condensate that supports translation. (B) The RNA-binding protein (red) binds to specific mRNAs (mRNA target of
the RNA-binding protein, light blue) which results in mRNA enrichment in the cytoplasmic condensate. (C ) The RNA-binding protein (red) uses
specific protein domains (yellow dots) to bind to specific proteins (protein target of the RNA-binding protein, blue dots) which results in their
recruitment into the condensate. The protein interaction domains are used for homotypic interaction to assemble the condensate and for het-
erotypic interaction to recruit and retain protein targets in the condensate. The multivalent protein interaction domains provide specificity for
the enriched proteins in the condensate which serve as potential subunits of complexes. (D) Translation of the mRNA target allows the newly
translated protein to form protein–protein interactions with a protein target in cis. A fully formed protein complex is indicated by the black outline
of the proteins and signifies that all potential retention sites aremasked. This allows the fully formed complex to leave the condensate. (E) As inD,
but the proximity of other mRNA and protein targets also allows interactions in trans between protein targets recruited by neighboring mRNAs
and among newly translated mRNA targets. (F ) Unoccupied multivalent interaction domains of the RNA-binding protein allow recruited proteins
and newly translated proteins to be transiently retained within the condensate network. Repeated binding allows them to scan the condensate to
increase the chance of encounter of specific interactors. After complex assembly, they leave the condensate through masking of the retention
sites. (G) Without visualizing the protein matchmakers that consist of the condensate RNA-binding protein and the bound mRNAs, protein com-
plex assembly appears to occur through diffusion and random encounter.
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localization, with localization restored when the Xvelo
binding sites were added back (Boke et al. 2016).
Similarly, the Vg1 mRNA localizes to L-bodies through
binding sites for the RNA-binding proteins PTB and Vera.
Mutation of the binding sites abrogates Vg1 mRNA local-
ization to the condensates (Neil et al. 2021). The RNA-
binding protein TIS11B binds to AU-rich elements
(Hudson et al. 2004; Ma and Mayr 2018). mRNAs that con-
tain several AU-rich elements localize to TIS granules,
whereas the same mRNAs that lack these elements are ex-
cluded from TIS granules (Ma and Mayr 2018). These find-
ings suggest that the mRNAs are locally entrapped in
cytoplasmic condensates (Fig. 1B).
Local entrapment in condensates was first shown for the

nanos mRNA which is produced at the anterior pole of fly
oocytes and uses diffusion to translocate to the posterior
pole. The nanos mRNA is then entrapped by the germ
plasm at the posterior pole (Forrest and Gavis 2003). Al-
though the entrapment is inefficient as only approximately
4% of nanos transcripts are found at the posterior pole, it is
sufficient for bodyplanpatterning (Forrest andGavis 2003).
Determining the fraction of enriched transcripts in TIS

granules revealed large differences between mRNAs
that encode non-membrane and membrane proteins.
Generally, mRNAs encoding non-membrane proteins
only partially localize to TIS granules, whereas nearly all of
the transcripts of mRNAs that encode membrane proteins
localize to TIS granules (Ma and Mayr 2018). The data on
TIS granules are consistent with a model where mRNAs
translated by ribosomes are anchored to the ER surface
by the signal recognition particle, thus stably entrapping
AU-rich element-containing mRNAs that encode mem-
brane proteins in TIS granules. AU-rich element-containing
mRNAs that encode non-membrane proteins seem to be
partially entrapped, likely by binding to RNA-binding pro-
teins enriched in TIS granules, including the known AU-
rich element binding proteins HuR and TIS11B (Ma and
Mayr 2018). mRNAs that lack AU-rich elements are exclud-
ed from the condensate, presumably through lack of bind-
ing sites for TIS granule-enriched proteins, and by
containing binding sites that localize them elsewhere.

SEVERAL CYTOPLASMIC CONDENSATES SUPPORT
TRANSLATION

Protein synthesis was shown to occur in several cytoplas-
mic condensates, suggesting that mRNAs that are en-
riched in diverse cytoplasmic condensates are translated.
For example, translation factor granules are sites of active
translation in exponentially growing yeast cells and require
translation for mRNA localization to the condensates
(Pizzinga et al. 2019). Translation-dependent mRNA local-
ization was also observed in mammalian cells (Voigt et al.
2017; Chouaib et al. 2020). Glycolytic mRNA granules,
also called “core fermentation” or CoFe granules, were

found in yeast and human cells and are translation factories
for glycolytic proteins (Lui et al. 2014; Morales-Polanco
et al. 2021).
Direct evidence for translation in cytoplasmic conden-

sates can be obtainedwith the SunTag systemwhich labels
nascent peptides with GFP and their corresponding
mRNAs with mCherry, thus visualizing active translation
of single molecules (Yan et al. 2016). This system detected
translation inside and outside of TIS granules and stress
granules (Mateju et al. 2020; Ma W and Mayr C, unpubl.).

RNA-BINDING PROTEINS HAVE LARGE NUMBERS
OF SPECIFIC PROTEIN INTERACTORS

RNA-binding proteins are defined as proteins that bind to
RNA (Baltimore and Huang 1970; Baltz et al. 2012;
Castello et al. 2012; Gerstberger et al. 2014; Caudron-
Herger et al. 2019, 2021). Most RNA-binding proteins are
characterized by a modular domain structure and contain
repeatedRNA-bindingdomains (Lundeet al. 2007). The re-
peated domains serve at least two purposes: (i) They allow
the protein to contact a higher number of nucleotides, thus
increasing the binding specificity to RNA and (ii) they are
commonly used as protein interaction domains (Lunde
et al. 2007). Structural analyses found that several RNA-
binding domains bind equally well to RNA and protein
(Chen et al. 1997; Kim et al. 2000; Ramos et al. 2002,
2006; Garcia-Mayoral et al. 2007; Clery et al. 2008; Chi
et al. 2011; Tenzer et al. 2013; Pabis et al. 2019; Yan et al.
2019). RNA-binding domains that serve as protein binding
sites include RRMs, KH domains, dsRNA-binding domains,
zinc fingers, and intrinsically disordered regions. The capa-
bility for protein binding allows RNA-binding proteins to
dimerize and to form extended RNA-binding surfaces
(Lunde et al. 2007; Clery et al. 2008). It allows them to inter-
act simultaneously with RNA and protein targets, thus en-
abling the recruitment of effector proteins to the mRNA.
This was shown to determine the functional outcome of
the bound mRNA or encoded protein (Dienstbier et al.
2009; Fabian et al. 2013; Berkovits and Mayr 2015; Lee
and Mayr 2019; Fernandes and Buchan 2021). For exam-
ple, when the RNA-binding protein binds a motor protein,
it allows subcellular localization of the mRNA (Dienstbier
et al. 2009). Or, when the RNA-binding protein recruits a
trafficking factor while the mRNA is translated, it allows lo-
calization of the encoded protein (Berkovits and Mayr
2015).
In addition to structural analyses, genome-wide ap-

proaches have also revealed that RNA-binding proteins
are among the protein classes with the largest number of
protein–protein interactions and thus are considered as
hubs for protein complex assembly (Baltz et al. 2012;
Brannan et al. 2016). Through integration of more than
100 data sets that identified potential RNA-binding pro-
teins, it was observed that the confidence to classify a
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protein as an RNA-binding protein increasedwith the num-
ber of protein interactors (Caudron-Herger et al. 2019,
2021). This finding emphasizes the fundamental role of
RNA-binding proteins as protein interaction hubs.
Importantly, the proteomic studies further revealed that
typically up to half of the protein interactors bind in an
RNA-independent manner, thus representing true protein
interactors of RNA-binding proteins (Tenzer et al. 2013;
Brannan et al. 2016). Taken together, these results indicate
that for the functional characterization of RNA-binding pro-
teins their capability for protein binding is as important as
their capacity for RNA binding (Fig. 1C; Lunde et al.
2007). We call here the protein interactors of RNA-binding
proteins their “protein targets.”

RNA-BINDING PROTEINS ACT AS MATCHMAKERS
BETWEEN THEIR mRNA AND PROTEIN TARGETS,
THUS COLOCALIZING RECRUITED AND NEWLY
TRANSLATED PROTEINS

After having established that translation occurs in cytoplas-
mic condensates and that RNA-binding proteins perva-
sively, but specifically bind to mRNAs and proteins, it
becomes evident that RNA-binding proteins that bind to
mRNAs and proteins during translation act as recruiters
of effector proteins to the site of translation (Fig. 1D;
Berkovits and Mayr 2015; Ma and Mayr 2018; Lee and
Mayr 2019; Fernandes and Buchan 2020). This facilitates
protein–protein interactions between newly translated
proteins and recruited proteins (Berkovits and Mayr
2015) and highlights the role of RNA-binding proteins as
matchmakers between their protein and mRNA targets
(Fig. 1D). During translation, the mRNA target is connect-
ed via the ribosome with its nascent peptide, therefore,
RNA-binding proteins bring together their protein targets
with the newly translated proteins encoded by their mRNA
targets. The matchmaking principle of RNA-binding pro-
teins has been experimentally demonstrated for a handful
of proteins where one or two RNA-binding proteins bound
to a scaffolding mRNA recruit effector proteins in cis to a
newly translated protein (Fig. 1D; Berkovits and Mayr
2015; Chartron et al. 2016; Ma and Mayr 2018; Lee and
Mayr 2019; Fernandes and Buchan 2020). Whereas these
examples represent individual protein complexes, we
wondered about the benefits of the matchmaking process
if it occurred in cytoplasmic condensates.

PROXIMITY IN CYTOPLASMIC CONDENSATES
ENABLES PROTEIN MATCHMAKING IN TRANS

Cytoplasmic condensates are enriched in RNA-binding
proteins and inhundredsof boundmRNAs (Hubstenberger
et al. 2017; Khong et al. 2017; Horste El, Zhen G, Mayr C,
unpubl.). If we envision the matchmaking process to hap-
pen within a cytoplasmic condensate, the proximity be-

tween newly translated proteins and protein targets
bound by neighboring mRNAs allows their potential
interaction in trans (Fig. 1E). Because of the condensate-
induced proximity, it is reasonable to assume that pro-
tein–protein interactions among recruited proteins or
among two nascent proteins will also be promoted (Fig.
1E; Mayr 2018).

TRANSIENT RETENTION OF PROTEINS IN
CYTOPLASMIC CONDENSATES BY BINDING
TO UNOCCUPIED BINDING SITES
IN RNA-BINDING PROTEINS

Protein complex assembly through matchmaking will work
best if the scaffold RNA-binding protein of the condensate
has a very high valency. As not all of the binding sites are
used for condensate assembly, the RNA-binding protein
will have a large number of unoccupied binding sites.
The unoccupied binding sites will then be available for
binding to protein targets and proteins encoded by
mRNA targets. These proteins will become transiently re-
tained in the condensate through repeated binding. This
allows the proteins to scan the whole condensate for po-
tential interaction partners that are also temporarily re-
tained, thus resulting in preferential complex assembly
between the retained proteins. If unoccupied binding sites
are not present, the proteins will freely exchange between
the condensate phase and the surrounding liquid phase
(Banani et al. 2017; Shin and Brangwynne 2017).

Compartment-dependent protein retention was previ-
ously shown for the ER. The ER contains ER-resident pro-
teins and at the same time is the site of protein synthesis
for membrane proteins that are only temporarily present
in the ER as they will traffic to their final destination. The
ER has to distinguish between ER-resident proteins and
proteins that are passing through. ER-resident proteins
have sequences that bind to ER-resident chaperones and
retain them in the ER (Nilsson et al. 1989; Bonifacino
et al. 1990; Cosson and Letourneur 1994; Zerangue et al.
1999).

SPECIFICITY FOR TRANSIENT PROTEIN RETENTION
IN CYTOPLASMIC CONDENSATES IS LIKELY
PROVIDED BY THE MODE OF CONDENSATE
ASSEMBLY

What protein domains could serve as protein retention sig-
nals for cytoplasmic condensates? Diverse domains were
found to contribute to the high valency of RNA-bindingpro-
teins that act as scaffolds of cytoplasmic condensates: RNA-
binding domains, intrinsically disordered regions, protein
interaction domains, and binding motifs for post-transla-
tional modifications (PTMs) (Hofweber and Dormann
2019; Guillen-Boixet et al. 2020; Smith et al. 2020; Yang
et al. 2020; Zhong et al. 2000) For G3BP1 it was shown
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that the amino-terminal NTF2 domain is used for homotypic
binding that is necessary for stress granule assembly.
Importantly, the same domain also engages in heterotypic
interactions that recruit proteins into the condensates
(Yang et al. 2020). Based on these results, we propose
that the multivalent domains of RNA-binding proteins that
are used to assemble specific condensates will serve as po-
tential unoccupied binding sites for transient protein reten-
tion in cytoplasmic condensates.
Recent data suggest that each condensate uses a specific

assembly mode. Whereas some RNA-binding proteins, in-
cluding FUS and hnRNPA1, phase separate by using multi-
valent interactions between tyrosines and arginines, HP1α
requires phosphorylation to form higher-order complexes
(Larson et al. 2017;Wang et al. 2018). PMLbodies assemble
through multivalent interactions between SUMO-1 and
SUMO-interaction motifs (Zhong et al. 2000; Lallemand-
Breitenbach and de The 2010; Banani et al. 2016; Li et al.
2017), whereas the Balbiani body and Cajal bodies usemul-
tivalent interactions between dimethylated arginines and
their corresponding binding sites in Tudor domains (Zhong
et al. 2000; Tripsianes et al. 2011; Roovers et al. 2018;
Courchaine et al. 2021).Wepropose that the unique combi-
nation of unoccupied binding sites that characterizes each
cytoplasmic condensate provides specificity for protein
complex assembly, as only certain groups of proteins can
become retained in the condensates.

HOW CAN SPECIFICITY BE ACCOMPLISHED
IF RNA-BINDING PROTEINS HAVE THOUSANDS
OF mRNA TARGETS?

In the early 2000s, Jack Keene proposed the RNA regulon
model which states that groups of mRNAs are coregulated
by RNA-binding proteins (Keene and Tenenbaum 2002;
Keene 2007). Subsequent CLIP analyses revealed that a
single RNA-binding protein often has thousands of RNA
targets that are involved in diverse biological processes
(Lee and Ule 2018; Van Nostrand et al. 2020). For example,
HuR has 4874 mRNA targets (Lebedeva et al. 2011;
Mukherjee et al. 2011) and regulates mRNAmodifications,
splicing, 3′ end cleavage and polyadenylation, mRNA nu-
clear export, stability, translation, and protein localization
(Fan and Steitz 1998; Gallouzi et al. 2001; Dai et al. 2012;
Tiedje et al. 2012; Berkovits and Mayr 2015; Oktaba et al.
2015; Chen et al. 2019). These data suggest that the uni-
verse of RNA targets of a specific RNA-bindingprotein con-
tains a large number of submodules with functionally
related mRNAs.
Oneway to identify functional submodules is to focus on

mRNAs that are coboundby twoor threeRNA-bindingpro-
teins (Fig. 2A). RNA-binding proteins frequently bind to
other RNA-binding proteins (Brannan et al. 2016) and it is
well established that they often use cooperative interac-
tions to regulate a specific process or function (Gregersen

B

A

FIGURE 2. Functional submodules of RNA regulons. (A) We propose that cobinding of two or more RNA-binding proteins to groups of mRNAs
define functionally related subgroups of mRNAs. A single RNA-binding protein, such as HuR, often has thousands of mRNA targets. The universe
of mRNAs with HuR binding sites is shown on the left. Subgroups of these mRNAs are cobound by other RNA-binding proteins (for example
TIS11B or Staufen; shown on the right), thus potentially representing groups of mRNA with shared functions, called functional submodules.
(B) We propose that cooperative action between motifs in mRNAs and their encoded proteins defines functionally related groups of proteins.
The universe of mRNAs with HuR binding sites is shown on the left. Groups of mRNAs with HuR binding sites may encode proteins containing
shared domains, thus potentially reflecting functional submodules. Shown are HuR mRNA targets that encode proteins with Armadillo/HEAT re-
peats. These proteins may share functions such as the regulation of splicing and nuclear export. Another group of HuRmRNA targets that encode
proteins with so far unknown shared motifs may regulate other functions known to be regulated by HuR.
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et al. 2014; Hennig et al. 2014; Hennig and Sattler 2015).
For example, cobinding of HuR and TIS11B to mRNAs
with AU-rich elements defines one of HuR’s functions in
the regulation of protein localization, whereas cobinding
of HuR and Staufen to mRNAs was found to be important
for the role of HuR in the regulation of cell migration
(Ma and Mayr 2018; Lee and Mayr 2019).

In addition, we propose that functional submodules of
RNA-binding proteins can be identified by co-occurrence
of specific mRNA and protein motifs (Fig. 2B). To test this
idea, we performed preliminary analyses and asked if cer-
tain protein motifs are enriched among the protein prod-
ucts of the mRNA targets of RNA-binding proteins. For
example, we observed that HuR mRNA targets are signifi-
cantly enriched in proteins with Armadillo/HEAT repeats
(expected: 28, observed: 44, fold-enrichment: 1.6; χ-
square, χ2 = 11.4; P=0.0008). The enrichment was even
stronger for the top 10% of targets with the highest num-
ber of HuR CLIP tags (expected: seven, observed: 19,
fold-enrichment: 2.7; χ-square, χ2 = 22.2; P<0.0001)
(Mukherjee et al. 2011; Zhen G and Mayr C, unpubl.).
Proteins with Armadillo/HEAT repeats are often involved
in splicing, nuclear export/import, protein transport, and
cell adherens junctions which represent functional catego-
ries that are over-represented among the HuR RNA
targets.

Another example is the strong enrichment of zinc finger
proteins among the mRNAs that contain CLIP tags for FUS
(expected: 189, observed: 282, fold-enrichment: 1.5; χ-
square, χ2 = 62.6; P<0.0001). Importantly, the enrichment
becomes stronger when focusing on the top 25%of targets
with the highest number of FUS CLIP tags (expected: 45,
observed: 83, fold-enrichment: 1.8; χ-square, χ2 = 36.6; P
<0.0001) (Hoell et al. 2011; Zhen G and Mayr C, unpubl.).
These results make it possible that corresponding mRNA
and protein motifs may have coevolved. Systematic analy-
ses on such functional submodules that identify co-occur-
rence of RNA and protein motifs are currently lacking, but
will likely increaseour understandingof the regulatory logic
of RNA-binding proteins.

TRANSIENT FORMATION VERSUS PERMANENT
LOCALIZATION OF PROTEIN COMPLEXES IN
CYTOPLASMIC CONDENSATES

Retention of proteins in cytoplasmic condensatesmay pro-
mote protein complex assembly by twomechanisms: (i) re-
tention increases the local interactor concentration
(Woodruff et al. 2017; King and Petry 2020) and (ii) repeti-
tive binding to unoccupied binding sites increases the
dwell time,whichdoesnot require a concentration increase
of the interactor in the condensate to promote complex as-
sembly. After having encountered the intended partner
protein, their interaction should then mask the retention
sites, thus allowing the protein complex to leave the con-

densates. In such cases, protein retention in cytoplasmic
condensates would serve as a checkpoint for full assembly.
This idea is again inspired by principles of protein complex
assembly of multimeric surface receptors and channels in
the ER (Bonifacino et al. 1990; Zerangue et al. 1999). The
subunits of multimeric membrane complexes are translat-
ed at the ER. To ensure that only fully assembled channels
or receptors leave the ER to be trafficked to the plasma
membrane, the individual subunits contain ER retention
sites (Nilsson et al. 1989; Cosson and Letourneur 1994).
Upon full assembly, these sites areburied andareno longer
accessible on the protein surface, thus allowing the multi-
protein complex to leave the ER (Bonifacino et al. 1990;
Zerangue et al. 1999). A similar mechanism was shown to
take place in the nucleolus for ribosome assembly (Riback
et al. 2020). Moreover, it could also take place in cytoplas-
mic condensates where protein motifs that interact with
mRNA, RNA-binding proteins, or PTMsmay serve as reten-
tion signals, thus only allowing fully assembled protein
complexes to leave the condensates (Fig. 1F). RNA-bind-
ing proteins are usually not part of the assembled protein
complexes (Berkovits and Mayr 2015; Lee and Mayr
2019), likely due to the fact that their high valency pre-
cludes their exit from the condensates.

A large fraction of protein complexes assemble in a
cotranslational manner (Shiber et al. 2018; Kamenova
et al. 2019; Panasenko et al. 2019). This means that a fully
folded binding partner interacts with a polypeptide chain
that is still being translated. Translation in cytoplasmic con-
densates where RNA-binding proteins act as matchmakers
is an efficient way to bring the two subunits into proximity
(Mayr 2018). The unfolded protein represents an mRNA
target, whereas the fully folded protein is one of the pro-
tein targets. Alternatively, both subunits could be mRNA
targets. In any case, transient retention of the fully folded
subunit in the condensate is necessary for efficient cotrans-
lational complex assembly.

Transient localization of proteins to cytoplasmic conden-
sates for assembly and subsequent trafficking to their final
destination has been observed for the chromatin factor
Hmgn5 (Moretti et al. 2015). Hmgn5mRNA is transported
in a 3′UTR-dependent manner to the growth cones of den-
drites. Neuronal activity changes the environment of the
growth cones (Hornberg and Holt 2013; Sasaki 2020) and
promotes the addition of specific PTMs to newly translated
Hmgn5. Modified Hmgn5 protein traffics to the nucleus
and regulates gene expression (Moretti et al. 2015). As
onlymodifiedHmgn5 is able tobind to chromatin, these re-
sults demonstrate a mechanism by which a change in the
cellular environment leads to a change in gene expression.
As a result, transient localization to cytoplasmic conden-
sates allows proteins to take on new features such as pro-
tein interactors or PTMs to alter their function.

We hypothesize that some protein complexes may use
cytoplasmic condensates as transient environments for
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complex assembly, whereas some signaling pathways may
be set upwithin the cytoplasmic condensates (Peeples and
Rosen 2021). For example, if all members of a signaling
cascade contain condensate retention sites that are not
being masked by complex assembly, then the cytoplasmic
condensates may allow scaffolding or channeling of reac-
tions (Yewdell et al. 2019). However, experimental evi-
dence for this principle is currently lacking. So far,
scaffolding of signaling pathways has only been observed
in transiently generated, signaling-induced condensates
that do not require mRNA or RNA-binding proteins to pro-
mote signaling reactions (Li et al. 2012; Su et al. 2016).

HOW TO TEST MATCHMAKING IN CYTOPLASMIC
CONDENSATES?

RNA-binding proteins together with their bound mRNAs
constitute the core components of the matchmaking pro-
cess (Fig. 1A and F). When examining protein complex as-
sembly in cis of individual complexes, it was shown that
deletion of the matchmaking RNA-binding proteins pre-
vented complex assembly, whereas tethering of the
RNA-binding proteins to the 3′UTRs of the RNA targets re-
stored it (Berkovits and Mayr 2015; Lee and Mayr 2019). In
contrast, the requirement for RNA-binding proteins for
complex assembly occurring in trans or as part of cytoplas-
mic condensates has not yet been shown. Therefore, it is
currently often assumed that protein complex assembly
in the cytoplasm occurs through diffusion and random en-
counter (Fig. 1G).
This viewpoint may change if we were able to visualize

the proposed matchmakers in the future. Merfish or
seqFISH+ could be used to directly detect groups of
mRNAs within condensates (Chen et al. 2015; Eng et al.
2019). Moreover, depletion of condensate RNA-binding
proteins followedbywidespreaddisruptionofproteincom-
plex assembly would provide indirect evidence for RNA-
binding proteins serving as matchmakers for protein com-
plex assembly. A more elegant experiment would be to
identify theaminoacids inRNA-bindingproteins thatare re-
quired for condensate assembly, followedbyprime editing
to mutate these residues in scaffold RNA-binding proteins
to disrupt condensate assembly in cells (Anzalone et al.
2019). As transient retentionof proteins in cytoplasmic con-
densates represents a collective property of the assembled
RNA-binding protein, our model predicts that condensate
disruption would impair protein complex assembly be-
tween the mRNA and protein targets of the RNA-binding
protein. However, such experiments have not yet been
reported.
It was previously reported that translation in TIS granules

is required for establishing specific protein–protein inter-
actions that cannot be formed when the proteins are trans-
lated outside of the condensate (Ma and Mayr 2018). In
addition to TIS11B and FXR1, a large number of RNA-

binding proteins localize predominantly to the cytoplasm
(Thul et al. 2017; Caudron-Herger et al. 2021) and may as-
semble into additional cytoplasmic condensates. We envi-
sion the cytoplasm to be extensively compartmentalized
by condensates and propose that condensate-dependent
complex assembly is widespread.
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